skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sowers, Lawrence C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increased expression of the human telomere reverse transcriptase (hTERT) in tumors promotes tumor cell survival and diminishes the survival of patients. Cytosine-to-thymine (C-to-T) transition mutations (C250T or C228T) in the hTERT promoter create binding sites for transcription factors, which enhance transcription. The G-rich strand of the hTERT promoter can form G-quadruplex structures, whereas the C-rich strand can form an i-motif in which multiple cytosine residues are protonated. We considered the possibility that i-motif formation might promote cytosine deamination to uracil and C-to-T mutations. We computationally probed the accessibility of cytosine residues in an i-motif to attack by water. We experimentally examined regions of the C-rich strand to form i-motifs using pH-dependent UV and CD spectra. We then incubated the C-rich strand with and without the G-rich complementary strand DNA under various conditions, followed by deep sequencing. Surprisingly, deamination rates did not vary substantially across the 46 cytosines examined, and the two mutation hotspots were not deamination hotspots. The appearance of mutational hotspots in tumors is more likely the result of the selection of sequences with increased promoter binding affinity and hTERT expression. 
    more » « less
  2. Glioblastoma is a fatal brain tumor with a bleak prognosis. The use of chemotherapy, primarily the alkylating agent temozolomide, coupled with radiation and surgical resection, has provided some benefit. Despite this multipronged approach, average patient survival rarely extends beyond 18 months. Challenges to glioblastoma treatment include the identification of functional pharmacologic targets as well as identifying drugs that can cross the blood-brain barrier. To address these challenges, current research efforts are examining metabolic differences between normal and tumor cells that could be targeted. Among the metabolic differences examined to date, the apparent addiction to exogenous methionine by glioblastoma tumors is a critical factor that is not well understood and may serve as an effective therapeutic target. Others have proposed this property could be exploited by methionine dietary restriction or other approaches to reduce methionine availability. However, methionine links the tumor microenvironment with cell metabolism, epigenetic regulation, and even mitosis. Therefore methionine depletion could result in complex and potentially undesirable responses, such as aneuploidy and the aberrant expression of genes that drive tumor progression. If methionine manipulation is to be a therapeutic strategy for glioblastoma patients, it is essential that we enhance our understanding of the role of methionine in the tumor microenvironment. 
    more » « less
  3. Sobol, Robert W. (Ed.)
    The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases. Irrespective of the mechanism of formation, modified bases can alter DNA-protein interactions and therefore modulate epigenetic control of gene transcription. The simultaneous presence of both chemically and enzymatically modified bases in DNA suggests a potential intersection, or collision, between DNA repair and epigenetic reprogramming. In this paper, we have prepared defined sequence oligonucleotides containing the complete set of oxidized and deaminated bases that could arise from 5-methylcytosine. We have probed these substrates with human glycosylases implicated in DNA repair and epigenetic reprogramming. New observations reported here include: SMUG1 excises 5-carboxyuracil (5caU) when paired with A or G. Both TDG and MBD4 cleave 5-formyluracil and 5caU when mispaired with G. Further, TDG not only removes 5-formylcytosine and 5-carboxycytosine when paired with G, but also when mispaired with A. Surprisingly, 5caU is one of the best substrates for human TDG, SMUG1 and MBD4, and a much better substrate than T. The data presented here introduces some unexpected findings that pose new questions on the interactions between endogenous DNA damage, repair, and epigenetic reprogramming pathways. 
    more » « less
  4. Abstract DNA damage drives genetic mutations that underlie the development of cancer in humans. Multiple pathways have been described in mammalian cells which can repair this damage. However, most work to date has focused upon single lesions in DNA. We present here a combinatorial system which allows assembly of duplexes containing single or multiple types of damage by ligating together six oligonucleotides containing damaged or modified bases. The combinatorial system has dual fluorescent labels allowing examination of both strands simultaneously, in order to study interactions or competition between different DNA repair pathways. Using this system, we demonstrate how repair of oxidative damage in one DNA strand can convert a mispaired T:G deamination intermediate into a T:A mutation. We also demonstrate that slow repair of a T:G mispair, relative to a U:G mispair, by the human methyl-binding domain 4 DNA glycosylase provides a competitive advantage to competing repair pathways, and could explain why CpG dinucleotides are hotspots for C to T mutations in human tumors. Data is also presented that suggests repair of closely spaced lesions in opposing strands can be repaired by a combination of short and long-patch base excision repair and simultaneous repair of multiply damage sites can potentially lead to lethal double strand breaks. 
    more » « less
  5. The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oli- gonucleotides and DNA followed by GC–MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the for- mation, persistence, and repair of a biologically important class of deaminated cytosine adducts. 
    more » « less